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Abstract—Upcoming 5G and Beyond 5G (B5G) cellular net-
works aim to improve the efficiency and flexibility of mobile
networks by incorporating various technologies, such as Software
Defined Networking (SDN), Network Function Virtualization
(NFV), and Network Slicing (NS). In this paper, we share
our findings, accompanied by a comprehensive online codebase,
about the best practice of using different open-source projects
in order to realize a flexible testbed for academia and indus-
trial research and development (R&D) activities on the future
generation of cellular networks. In particular, a “Cloud-Native
Cellular Network Framework (CN2F)” is presented which uses
OpenAirInterface’s codebase to generate cellular Virtual Network
Functions (VNFs) and deploys Kubernetes to disperse and manage
them among some worker nodes. Moreover, CN2F leverages
ONOS and Mininet to emulate the effect of the IP transport
networks in the fronthaul and backhaul of real cellular networks.
In this paper, we also showcase two use cases of CN2F to
demonstrate the importance of Edge Computing (EC) and the
capability of Radio Access Network (RAN) slicing.

Index Terms—Cellular Testbed, SDN, Slicing, VNF Placement

I. INTRODUCTION

THE fifth generation of mobile communication networks
(5G) promises the support of a range of applications

from Ultra-Reliable Low-Latency Communication (URLLC)
to enhanced Mobile Broadband (eMBB) to massive Machine-
Type Communication (mMTC) connections. The diversity of
supported applications hinders to use of the conventional one-
size-fits-all structure for future cellular networks and inno-
vative models are required. In order to increase flexibility
and efficient resource sharing among different application
sectors, new models are supposed to be built upon virtual-
ization/softwarization technologies, such as Software Defined
Networking (SDN), Network Function Virtualization (NFV),
and Network Slicing (NS) among others [1].

To move toward 5G innovative concepts, several AI/ML-
based algorithms have been proposed to enable intelligent
and autonomous network management, which should be tested
and evaluated before their commercial rollout [2]–[6]. These
algorithms use a large amount of data extractable from both
the Radio Access Network (RAN) and Core Network (CN) to
learn patterns and automatically enhance network operations.
Small-scale testing of 5G use cases allows developers to
identify potential issues and address problems before a large-
scale rollout. In the same way, 5G and Beyond 5G (B5G)

Fig. 1: CN2F architecture with a master node and three worker
nodes

testbeds enable researchers to evaluate real-world network
scenarios [7], [8].

In this paper, we propose the CN2F, a simple Cloud-Native
Cellular Network Framework, as a simple general framework,
to build prototypes for future generations of cellular networks.
Fig. 1 depicts the CN2F structure. The CN2F comprises a
cluster of four nodes (one master and three workers), an L2/L3
switch, two bridge nodes, and a software-defined network.

In this paper, first, we review the main technological
concepts and frameworks such as containers, Docker [9],
Kubernetes [10], Mininet [11], and RAN splitting. Then, we
explain how to use these primitives to set up the CN2F
framework (including the cluster and bridges). Specifically, for
the CN2F setup, we provide an Ansible playbook to prepare
and install necessary packages on nodes, which is the best
practice to make the Kubernetes cluster. We also describe
how to create cellular Virtual Network Functions (VNFs)
(or Pods) from Docker Images. For the cellular VNFs, we
take OpenAirInterface (OAI) project as one of the existing
open-source candidates for the software implementation of the
4G/5G RAN and CN components.

Our main focus in this work is how to set up the CN2F
framework regardless of the particular VNFs that use this
framework to realize the final prototype of a specific 4G/5G
network. Since the 4G/5G open-source projects are evolving
and have different stability levels, we resort to using OAI’s
(MAGMA-MME based) 4G implementation as it is claimed
to be “running for hours and days without any restart” [12]. By
the way, 4G core network is still used in 5G non-standalone
(NSA) systems.
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Fig. 2: Organization of the paper

Finally, we demonstrate using CN2F to investigate the im-
portance of VNF placement and RAN slicing as two significant
capabilities of future cellular networks.

The results of this paper are reproducible, and the source
codes alongside scripts to set up the CN2F and execute the
use cases are publicly available on our GitHub1 repository for
the academia and industrial community.

The remainder of this paper is structured as follows (see
Fig. 2): Section II provides the necessary background and
definitions. Section III describes the CN2F structure in detail.
Section IV explains our evaluation and the implementation of
two use cases in our framework. Section V reviews alternative
testbeds proposed in the literature, along with their goals and
applications. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we briefly review the required background
material for building a cloud-native cellular network frame-
work. This section is presented in two subsections. The
first subsection covers the topics encountered at the time of
generating cloud-native applications and building a cluster
over which the application is deployed. Therefore, the first
subsection is general and not specific to cellular networks.
Then, in the second subsection, we discuss topics specific
to cellular networks, such as different generations of cellular
networks and available options and open-source projects to
be used for building and deploying cellular VNFs on a given
testbed/cluster.

1Available at https://github.com/CN2F/core

A. Cloud-Native Applications and Infrastructure

In this part, we look over the concepts and technologies that
play essential roles in developing cloud-native applications and
building the supporting infrastructure.

1) Container and Docker: A container is a complete pack-
age of an application software itself and all its dependencies
which can run on different computing systems quickly and
reliably without complaining about necessary dependencies.
The Linux primitives that enable containerization are “names-
paces” that provide isolation (in different levels, such as
process, filesystem, and network) and “cgroups” which can
be used to restrict resource consumption (e.g., memory, CPU,
and bandwidth).

Docker [9] is an open-source virtualization technology that
facilitates the deployment, creation, and management of con-
tainerized applications. Similar to processes that are running
instances of programs (executable files), the containers are also
running instances of Docker images in their (possibly) isolated
and restricted environments. An image is a compressed archive
file that contains application (and dependencies) files inside
some directories along with a startup command that specifies
the program by which the container’s life begins executing (see
Fig. 3). An image is created based on a recipe, known as Dock-
erfile, which specifies the base image, files to be copied inside
the image, instructions to build the application, and the startup
command. Moreover, run-time parameters (e.g., networking,
environment variables, and volumes) can be specified declar-
atively in a configuration “docker-compose.yml” file which is
fed to a tool called Docker Compose to run/manage containers
accordingly. Docker also provides a registry (Docker Hub) to
share (push/pull) official images built by different development

https://github.com/CN2F/core
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Fig. 3: Image and container

teams.
2) Kubernetes: Kubernetes [10] is an open-source platform

for container orchestration, introduced by Google in 2014, to
manage and automate the deployment, scheduling, monitoring,
maintenance, self-healing, rollout and rollback, and operation
of application containers across a cluster of machines. In fact,
Docker enables developers and operators to create and run
containers, while Kubernetes is used to orchestrate different
containers. More precisely, Kubernetes allows the deployment
of microservices over a number of machines and simultane-
ously hides the infrastructure from the application’s point of
view. Users can also deploy applications on different cloud
providers using a standard set of APIs provided by Kubernetes,
without separately needing to use each provider’s API for
deployment and management of the applications.

In order to use the application management capability in
Kubernetes, a description of the application’s design is re-
quired. Then, Kubernetes turns the aforementioned description
into a running set of objects and ensures they keep running
by restarting those that fail. If some changes occur in the
application’s design, Kubernetes takes the steps required to
transform (update) the set of running objects into new ones.

To distribute microservices among several machines, we
need to create a Kubernetes cluster. The structure of a Ku-
bernetes cluster mainly includes a number of worker nodes
and a master node managing the application running over
the workers. This structure is illustrated in Fig. 4. As shown
in this figure, the master node includes several components,
namely etcd (which is a key-value database recording the

Fig. 4: Structure of a Kubernetes cluster with two worker
nodes

Fig. 5: Structure of a pod containing two containers

desired/current states), API server (which provides commu-
nication among etcd and other components), scheduler (which
is responsible to place “pods” and other objects on worker
nodes), and controller (which is the brain of Kubernetes).
The pod is a collection of one or more containers with some
managing metadata, which represents the most basic deploy-
able unit that can be created and managed in Kubernetes.
On the other hand, a worker node consists of components
called kubelet (the Kubernetes agent on each node, which is
responsible for executing master’s commands, such as pod
creation/deletion using tools (e.g., Docker)) and kube-proxy
(responsible for the networking and services).

Kubernetes has also spawned many other related open-
source projects, mainly under the umbrella of the Cloud-Native
Computing Foundation (CNCF), such as CoreDNS, Envoy,
Helm, and Prometheus. Moreover, CNCF organizes several
KubeCon + CloudNativeCon conferences per year.

a) Pod: A pod is a group of one or more containers
(with shared hostname, IPC2, and network namespaces3) in
addition to a set of specifications, including parameters such
as labels and ports, among others. A pod can be viewed

2Inter Process Communication
3Filesystem namespaces of pod’s containers are different but they may have

access to shared volumes.
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Fig. 6: Lifecycle of a pod

as an application-specific logical host and is the smallest
deployable unit of computing in Kubernetes. The pod creation
needs no more technology than what is required for the
creation of containers, as it is, in fact, a main container (called
the “infrastructure” or “pause” container) which hosts the
application container(s) (see Fig. 5). Since Kubernetes is a
declarative platform, to create pods, we instruct controllers,
such as ReplicaSet, Deployment, Job/CronJob, DaemonSet,
and StatefulSet through a “pod template” in their yaml files to
create and manage those pods on our behalf4. Fig. 6 shows a
typical pod’s lifecycle. Before scheduling, it is in the Pending
(or Pre-scheduled) state. Then, at the time of the creation of
the pause container and execution of the “init” containers, the
state is Initialized. Then, the main containers become ready
at the Containers-Ready state. After that, the pod is ready to
serve at the Ready state. In the case that all containers inside
the pod terminate successfully, the state changes to Succeed,
and otherwise, to Failed. Using the init containers which run
before the main ones, we can make sure that all prerequisites
before starting the main containers are satisfied. One usage of
this feature in the pod’s lifecycle is to enforce an order for the
execution of the pods.

b) Networking: Kubernetes’s model for pod networking
is flat in which all pods (logical hosts) are in the same
subnet (i.e., connected through a “logical” L2 switch). Pods
inside a single node are connected to the same bridge through
virtual Ethernet interface pairs. However, for pods on different
nodes to communicate, we need to somehow connect the
bridges on different nodes to each other. As a result, providing
Kubernetes’s network abstraction for pods can be complex and
usually achieved through an additional SDN layered on top of
the actual network (which uses encapsulation and some Linux
networking tools, such as iptables, routes, and IP-forwarding).
Container Network Interface (CNI) is a project to simplify
networking configurations in Kubernetes through the addition
of plugins, such as Calico, Flannel, and Weave Net.

c) Volume and ConfigMap: By default, a pod’s filesystem
is the one defined in its image, and any file operation (e.g.,
creating a file or writing into a file) is ephemeral and will
be lost by pod termination/restart. In Kubernetes, we can use
different types of volumes to have different levels of file persis-
tency, such as emptyDir (persistency across container restarts

4Different controllers provide different functionalities, such as maintaining
the number of pods, creating a specific pod on each node, and managing the
pods during an application update

during the pod’s lifetime), hostPath (higher persistency across
pod restarts in a node), and nfs (even higher persistency across
node change). Similar to networking, storage consistency is
complex in general, and several Container Storage Interface
(CSI) projects have been developed to accomplish the work
as plugins, such as Cinder and Cephfs.

A related topic to volumes is the ConfigMap which is used
to pass arguments to containers by mounting configuration
files into containers through a special type of volume, not
surprisingly, called ConfigMap.

3) Mininet: In SDN-enabled networks, the control plane
handling management operations is logically centralized and
physically isolated from the data plane, which in turn en-
ables high network configurability and programmability. The
network programmability and the capability of optimizing
resource allocation and utilization in a centralized way, made
possible by the SDN paradigm, are expected to alleviate the
burden of the data onslaught expected from data-intensive
applications [13]. Mininet [11] is an emulation tool that allows
one to virtually emulate a complete SDN network scenario
comprising a number of virtual hosts, controllers, switches,
and links. It uses container-based virtualization to make a
single system act as a complete network.

B. Cellular Network Generations and Open-Source Projects

Wireless mobile networks first started as the extension to
the Public Switched Telephone Networks (PSTN) in order
to support mobile users. At first, they were composed of a
single high-power base station to cover an area of around 70
to 80 km radius. In order to increase the capacity (number of
subscribers), the cellular idea emerged. The cellular structure
suggests using multiple low-power base stations through which
the whole area is tiled by (cell-like) hexagons and the fre-
quency reuse becomes possible. The downside of the cellular
structure is the need for handoff and interference management.
However, because of its capacity-increasing benefit, the under-
lying structure of all current Wireless Wide Area Networks
(WWAN) obeys the cellular pattern.

1) Cellular Generations and Open-Source Projects:
a) 1G and 2G Networks: The first generation (1G) was

analog and only supported voice. The 2G is characterized by
being the first that used digital modulation, and hence, fea-
tured higher service quality (encoding), security (encryption),
new services (SMS5), and more efficient Radio Frequency
(RF) spectrum usage through Time Division Multiple Access
(TDMA) and Code Division Multiple Access (CDMA). The
dominant standard of the 2G network is GSM (Global System
for Mobile communication) which is still alive due to the vast
investment and capability to support Internet of Things (IoT)
applications. For the open-source software projects that im-
plement 2G networks’ components, we can refer to OpenBTS
and YateBTS.

b) 3G Networks: The main feature of the 3G networks is
the change of the focus from voice to data. In this generation,
the core of the network is separated into two parts; one
based on the conventional circuit switch architecture to support

5Short Message Service



5

SGW PGW
Internet/IMS/...

S1-MME (S1-AP)

S1-U

Traffic

Signaling

Fig. 7: A simplified LTE architecture

voice and one based on the packet switch architecture (best
suited) to support data. As a result, the 3G networks support
both voice and data. Moreover, 3G realized ITU’s IMT 2000
vision for cellular networks and supports new services, such
as mobile Internet through increased data rate. The dominant
3G standard is UMTS (Universal Mobile Telecommunications
Service) which then evolved to HSPA (High-Speed Packet
Access or 3.5G) as a transient generation with higher data
rates. 3G networks are also still alive, again because of the
vast investment and supporting IoT applications. OpenBTS-
UMTS is an open-source project that implements parts of the
3G networks.

c) 4G Networks: The main feature of the 4G networks is
an all-IP structure. In other words, the core of the network is
purely packet-switched, named EPC (Evolved Packet Core).
As a result, from this generation forward, we can state that
cellular networks are the extension of the Internet and data
services to mobile users. 4G networks satisfy the requirements
of ITU’s IMT-Advanced, and for multimedia communications,
such as voice, they rely on the IMS (IP Multimedia Subsys-
tem) framework. Moreover, 4G networks demonstrate many
advances in the communication theory in practice, such as
small calls, relays, carrier aggregation, Coordinated Multi-
Point (CoMP), Inter-Cell Interference Coordination (ICIC) in
the RAN, Control and User Plane Separation (CUPS) (as the
first traits of SDN), and Dedicated Core Networks Selection
(DECOR) (as the first traits of slicing) in the core of the
network. The dominant standard of 4G networks is LTE (Long
Term Evolution), and the open-source 4G projects include OAI
and srsLTE.

As this paper implements 4G cellular VNFs on the CN2F,
here we provide more details on EPC components. Fig. 7
depicts a simplified LTE architecture. All links are logical and
may be realized through an IP network. The PGW (Packet
Gateway) is the gateway of the cellular network. Its main
functionality is to be the mobility anchor point, which hides
the mobility of the users from the outside world. PGW uses
tunneling (encapsulation of the packets) to route the traffic
of users to where they are located. Other functionalities of
the PGW include QoS enforcement and IP address allocation
to connected UEs (User Equipment). However, there may
be millions of users, and supporting all of them with one
or a handful of PGWs is not practical. This is where the

need for SGWs (Serving Gateways) becomes evident. In fact,
the whole area under the coverage of a cellular network
operator is divided into regions, consisting of several cells.
Each SGW is responsible for tracking the location of the UEs
in a specific region and making necessary tunnels to their
corresponding cell site base station (or eNB (evolved Node
B)). Then the end-to-end tunneling between the PGW and
a user (UE) in a specific region is broken into two tunnels;
the tunnel from the PGW and an SGW (the one responsible
for that region) and the tunnel between that SGW and the
eNB to which the UE is connected. As a result, the PGW
needs to change its state to about one UE only when it
crosses the region’s borders. The component which is informed
about the UE location by the eNBs and instructs SGWs
and PGW(s) to configure their tunneling parameters is the
MME (Mobility Management Entity). MME is also involved
in paging, handover, authentication, security, and management
of subscription profiles. Finally, as access to the network is
not for free, we need a database that records subscribed users’
information, including their identities, imprecise locations in
the network, security (secret keys), and QoS contexts. The
HSS (Home Subscriber Server) realizes this database and its
secure connection to the MME in the LTE architecture.

The 3GPP release 14 introduced the idea of CUPS which
is the separation of the user and control plane as depicted in
Fig. 8. In CUPS, SGW and PGW are decomposed into two
parts; one that routes users’ data packets (SGW-U and PGW-
U) and one that performs controlling the connections (SGW-C
and PGW-C). Therefore, MME, as a pure controlling entity,
makes the connection to SGW-C and PGW-C which control
SGW-U and PGW-U, respectively. CUPS adds flexibility to
network deployment and operation (as different components
can be independently scaled up/down on demand and in
different places) and it can be considered the first introduction
of the SDN in cellular networks which is matured/completed
in the 5G networks (3GPP release 15 and above).

d) 5G Networks: The cellular networks take an ambitious
step in 5G with the goal of supporting applications with
different demands (first envisioned in ITU’s IMT-2020). The
realm of these applications is specified by the eMBB, the
mMTC (or massive IoT (mIoT)), and the URLLC as the
extreme corners where well-known applications (e.g., smart
homes, augmented reality, and industry 4.0) can be placed
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Fig. 8: The LTE’s CUPS architecture

somewhere between, based on their demands similarity to the
mentioned corners (e.g., required peak data rate, connection
density, mobility, and latency). After a period of ambiguity
and discussion on “what will 5G be” [14], it became clear that
in order to support such diverse applications, SDN and NFV
would be the main key technologies in any true 5G realization.
The SDN and NFV enable the creation of several logical
networks, called network slices, on top of the same infrastruc-
ture, each tailored according to the requirements of a specific
application. On the other hand, in the RAN, 5G introduced
New Radio (NR) which features even higher data rates, more
flexibility (such as different spectral modes of operations and
the alternative ways to interact with the core network; SA/NSA
(Stand-Alone/Non-Stand-Alone)), massive MIMO, mmWave,
and dual-connectivity (simultaneous connection of 5G UEs to
a 4G eNB and a 5G gNB).

5G core network, also known as SBA (Service Based
Architecture), consists of entities that less or more resemble
their EPC’s counterparts, such as Unified Data Management
(UDM) (≈ HSS), User Plane Function (UPF) (≈ SGW-
U and PGW-U), Session Management Function (SMF) (≈
SGW-C and PGW-C), and Access and Mobility Management
Function (AMF) (≈ MME). It also comprises new entities
related to VNF and network slicing, such as Network Repos-
itory Function (NRF) (a repository listing all the functions),
Network Slice Selection Function (NSSF) (which selects the
network slice instances for a given UE), Network Exposure
Function (NEF) (which exposes some internal events related to
UEs), and Network Data Analytics Function (NWDAF) (which
collects and analyzes information from the network and its
users). The main characteristic of the SBA is that different
entities interact with each other through well-established (and
successful) API standards, such as HTTP and JSON, which
makes the core of the 5G cellular networks more look like the
usual client-server model in the Internet.

The 5G paradigm shifts towards more softwarization and
virtualization, which has also revolutionized open-source ac-
tivities. Projects such as OAI and srsLTE also have products
for the 5G networks. Other projects such as free5GC and
Open5GS are also contributing to this subject (see [15] for
a thorough survey and comparison among different 5G open-
source projects). Different open-source projects for cellular

Fig. 9: RAN splitting proposals

networks differ from each other in terms of community sup-
port, components they have implemented, and stability level.
We found only one project that claims “running for hours and
days without any restart” which is the LTE’s EPC (release 14)
with MAGMA MME-based deployment [12]. Hence, in this
work, we have used this project to be deployed on the CN2F.

2) RAN Splitting: RAN splitting refers to the split of the
RAN protocol stack, including the physical and MAC layers,
into two or more parts which can be deployed separately
within distinct nodes (or pods) and they can interact with each
other over well-defined APIs. The idea behind the RAN split-
ting is to reduce capital expenditures and operating expenses
(as a result of minimizing the cell site equipment), increase
resource sharing and cope with the tidal effect (as a result
of centralization), and enable advanced collaborative signal
processing techniques, such as interference management and
CoMP transmission and reception.

For RAN splitting, different schemes have been proposed
by different organizations as shown in Fig. 9. China Mobile is
the pioneer by first introducing the idea of the RAN splitting
and proposing the Cloud/Central RAN (CRAN) for the 3G
networks and, later, the Next Generation Fronthaul Interface
(NGFI) for 4G/5G networks. In CRAN terminology, the whole
protocol stack breaks down into two parts named BBU (Base-
Band Unit) and RRH (Remote Radio Head). The I/Q samples
are sent back and forth between BBU and RRH using Common
Public Radio Interface (CPRI) links. However, high stress on



7

Fig. 10: The de-facto choice for RAN splitting

the fronthaul link (in terms of bandwidth and delay) resulted in
limited deployments of CRAN in practice. To cope with even
further bandwidth and latency constraints in 4G/5G, China
Mobile redesigned the splitting in the NGFI scheme in which
the separated components of the RAN are called the Remote
Cloud Center (RCC) and Remote Radio Unit (RRU). China
Mobile proposes six options in NGFI for the RAN splitting
and compares the bandwidth and delay requirements of each
option in its white paper. OAI supports the following node
functionalities:

• eNodeB
• RCC and RRU (NGFI IF5): split-point at the OFDM

symbol generator (i.e., frequency-domain signals)
• RCC and RRU (NGFI IF4p5): time-domain fronthaul

(more than 1 GbE is required)
On the other hand, Small Cell Forum (SCF) has been

contributing by offering (Network) Function Application Plat-
form Interface ((N)FAPI) which defines the API between
the physical and the MAC (and above) layers for 3G, 4G,
and 5G networks. Here, the separated parts of the RAN are
denoted by Virtual Network Function (VNF) and Physical
Network Function (PNF), respectively. Finally, at the time of
introducing the New Radio (NR), 3GPP suggested ten options
and suboptions for the splitting point for the 5G-RAN and
referred to the separated parts as the Centralized Unit (CU) and
Distributed Unit (DU). As depicted in Fig. 10, among different
options, the de-facto choice is to place the upper two layers
(PDCP and RRC) in the CU (3GPP’s option 2 and ORAN F1
interface) and the remaining layers in the DU which can be
further divided into DU and Radio Unit (RU). OAI supports
the functionality of CU and DU based on the de-facto split
choice.

III. CN2F: CHALLENGES AND BEST PRACTICES

CN2F aims to facilitate the building of flexible network
scenarios with various network topologies. In this section,
we describe the steps to construct the CN2F accompanied
by our best practices (i.e., the best realized solution to cope
with a challenge) in each step. In addition, we present a

Fig. 11: Installing required packages and configuration on
cluster nodes using Ansible

detailed tutorial demonstrating how to get from a portable
network implemented with Docker containers to a cloud-
native network implemented on the Kubernetes platform. The
proposed structure in CN2F resembles the “flexible” and
“hierarchical” model of the modern cellular network (Fig. 1).

Specifically, CN2F has been designed to demonstrate a net-
work with edge computing, cloud computing, RAN splitting,
and NFV capabilities. Two bridges (each emulating an IP
network) are incorporated in the CN2F structure; FH and TN.
The FH bridge sits between distributed RAN components, such
as RCC (or CU) and RRU (or DU), and therefore, it enables
the RAN splitting test cases. On the other hand, the TN bridge
may divide the structure into two parts; one close to RAN (or
UEs) and one far away. As a result, the distinction between
edge computing and cloud computing can be investigated.

Besides the bridges, the CN2F includes a cluster of four
machines. The cluster size is minimal as we need one machine
for the master node, two machines (i.e., two worker nodes)
to host different components of the distributed RAN, and one
machine (i.e., another worker node) to host the VNFs (such as
core network’s VNFs), which may reside in the data center in
reality. All nodes are connected to a Gigabit Ethernet switch.
One node is further connected to the USRP-B210 (via USB
3.0) which plays the role of radio head in our setup.

Our best practice in order to automate the process of
installing required packages (e.g., Git, Python, Wireshark, and
Docker), doing some configurations regarding CPU states and
the Linux kernel, and copying some bash scripts (for enabling
IP forwarding, IP addressing, etc) is to first list all of them in
an Ansible playbook file in the “Ansible management node”
(in our case a laptop with the SSH connection to the cluster
nodes, aware of their IP addresses, usernames, and passwords,
which has ansible and openssh-client installed). In this way,
after installing the OS on bare-metal machines (cluster nodes),
it suffices to just install openssh-server on them. Then, the
Ansible management node can do all the required installations
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and configurations specified in the playbook on all cluster
nodes with a single command (Fig. 11).

A. Cluster Setup

In this section, we describe the steps to set up a Kubernetes
cluster. As explained in the background, a Kubernetes cluster
comprises a set of components, such as kube-proxy and
kubelet, which should be installed and configured on each
node and will recover in case of restarting a node. Since manu-
ally installing these components is time-consuming and error-
prone, several tools are provided for the cluster installation.
We tested three tools, including Kubeadm, Kubesphere, and
Rancher Kubernetes Engine (RKE) to install clusters. Among
them, RKE is selected as this tool is handier, more stable, and
easier to configure. Also due to its flexibility, we can configure
multiple cluster options in the rancher configuration file which
is used to deploy a cluster.

The Kubernetes networking model requires certain network
features but at the same time allows a degree of flexibility
regarding the implementation. As a result, various projects
have been released to address specific environments and
requirements. Container Network Interface (CNI) is one of
those projects supporting plugin-based functionality to sim-
plify networking in Kubernetes. The main purpose behind CNI
is to provide enough control to administrators for monitoring
communication while reducing the overhead of manually gen-
erating network configurations. One of our main challenges
was to pick up the best CNI for our framework. Among
different CNI providers, Calico [16] is used in the final
structure of CN2F as it enables us to assign a static IP to
each deployed pod, and this easy-to-deploy CNI provider is
supported by RKE.

We deploy a Kubernetes cluster using four machines with
Intel Core i9-11900 CPU@3.5 GHz, 32 GB of RAM DDR4
memory, using an operating system Ubuntu 18.04 LTS, in-
terconnected by an L2/L3 switch. This cluster consists of a
master node and three worker nodes as shown in Fig. 1.

B. Building Docker Images

Docker provides two ways to run a container using Docker
images. One is to pull the Docker image of the application
from a Docker registry (e.g., Docker Hub), and the other is
to build the Docker image of the application using Dockerfile.
Dockerfile is defined as a recipe containing all the required
dependencies and some instructions in order to make the
application runnable inside the Docker container.

1) CN Images: We have used the Dockerfiles in the Ope-
nAirInterface GitHub repositories [17] to build the correspond-
ing image of each module. We pulled the images from the
official repository and pushed them to our own repository with
a new tag. As a result, there is no need to rebuild images every
time.

2) RAN Images: To build the RAN module, we employed
Dockerfiles existing in EURECOM GitLab [18]. In order to
build the RAN image, three Dockerfiles are employed, which
are sequentially built to make the final RAN image. The use
of three Dockerfiles brings about a lightweight final image

for the RAN module and accelerates the process of image
rebuilding. Since the Dockerfile for constructing eNB image
is being updated by EURECOM every once in a while in the
dev branch, we tracked this Dockerfile (also Dockerfiles for
RRU and RCC) and tested different tags in order to find the
ones that work properly. This was one of our challenges during
the CN2F framework setup.

C. Moving from Container to Pod

As mentioned in the background section, a pod is a Kuber-
netes object that encapsulates one or more containers. The first
step in deploying a module is to create a pod definition (which
is then placed inside the “pod template” part of a Deployment
object) based on the docker-compose file. All the needed
configurations (e.g., environment variables, volumes, etc) must
move properly and precisely from the docker-compose file to
the pod definition file. We can consider the MME definition
file as an example since MME is the most complex among
OAI modules and it covers all significant issues. A simplified
MME definition file is illustrated in Fig. 12. In this part, we
first introduce the pod definition file and its main sections.
Then, the most significant points for making pod definition
files based on docker-compose files will be elaborated on.

1) Basics of Pod Definition File: A pod definition file
consists of four basic sections; apiVersion, kind, metadata, and
spec. The spec is the part under which an array of containers
could be configured and is worth concentrating. There exist
a nodeSelector option, under the spec part, to determine the
specific node where we want to deploy each pod. This is one
of the basic parts of a definition file.

2) Image to Pod Translation:
a) Environment Variables: In Docker, environment vari-

ables can be set using either the environment attribute or the
env file option. This can be represented as an env section in the
pod definition file. Note that to configure the RAN module, it
is required to bind the /dev/bus/usb path to the eNB container
as we use a USRP board connected to the USB3 port.

b) Security: Similar to privileged: true in the docker-
compose file, we define a securityContext in the definition file
that conducts Kubernetes to run the containers in privileged
mode. This is required for containers to have some capabilities,
such as system administrator, in order to operate as expected.

c) Networking: In Docker, containers are assigned a
static IP address, which enables them to communicate with
each other using real interfaces. However, in this setup,
networking settings, such as routes, need to be manually con-
figured. One of the challenges we encountered in Kubernetes
was assigning a static IP to each pod, which is necessary for
OAI modules as they require programs to bind to a specific IP.
To this end, we used Calico as a CNI so that each deployment
has a unique IP address in the range of the Calico subnet. Also,
there is no need to set any networking settings manually.

d) Data and Volumes: The volume section in the docker-
compose file can be translated into the hostPath and mountPath
sections. The hostPath is located on the node that the nodeSe-
lector option referred to. Also, we used another type of volume
named ConfigMap. There exist some configuration files which
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Fig. 12: A simplified MME definition file

should be converted into ConfigMap in the Kubernetes cluster
to be used as volume bindings in the modules.

e) Dependencies: The depends on field in a docker-
compose file sets the order of container deployment. However,
in Kubernetes, we use initContainers to achieve the same
functionality. Init containers check if a specific port of the
container, they depend on, is open using the netcat command.
Once the init container successfully returns, the pod will be
deployed.

D. Deploying Pods On The Cluster

After installing the cluster and configuring framework mod-
ules, a few steps need to be done to deploy the whole network
and check the connectivity of modules to each other. Also, we
faced some challenges during the deployment phase, the most
important of which are elaborated on in the following.

1) VNF Requirements and Startup:
a) HSS: The HSS needs to be connected to the Cassandra

database to fill in the database tables with subscribers’ profile
data (such as their IMSI, APN, and secret keys). To this
end, some specific empty tables must exist in the database

before deploying the HSS. In Docker deployment, a “db init”
container is responsible for creating those tables. However, in
Kubernetes, those (empty) tables could be created using an init
container which executes the db init instructions. Moreover,
in our setup, we just make sure that Cassandra pod is deployed
in the same system that the data tables are stored.

b) MME: Since the MME module should be connected
to the SPGWC/SPGWU and HSS, it needs to be checked
whether they are correctly configured. To configure the MME
module, we utilized the ConfigMap object to include the
necessary files. This approach enables us to avoid mounting
the entire directory, as we did in previous methods of setting
volumes, and instead, only mount a specific file. Additionally,
the ConfigMaps are automatically updated by the kubelet
periodically in case of any changes. This means that if any
parameters are modified, there is no need to restart the
corresponding pod.

c) SPGWC and SPGWU: In the CUPS architecture, the
SPGWC is the control plane component and the SPGWU is
the corresponding data plane component of the conventional
monolithic SPGW. These modules need to connect to each
other, to the MME, and the eNB/RCC.

d) eNB: The node where eNB is deployed must be
connected to the USRP board via USB3 port. Along with mod-
ules’ IPs that need to be set correctly in the eNB configuration
file, Mobile Network Code (MNC) and Mobile Country Code
(MCC) are also required to be set the same as are in the MME
module and also in the programmed sim card. The system
(PC) needed to deploy the eNB must be very low-latency and
should be sufficiently fast. Thus, it is crucial to check the
kernel version and i7z report of that node, before deploying
this module, to make sure everything works properly (This is
also very important in RRU/RCC as well).

e) RCC and RRU: To establish a connection between
RCC and RRU, their versions should match, similar to the
case of eNB. Moreover, in mounted configurations, the local
and remote IP addresses need to be set according to the pod’s
IP address in their definition files. Note that the configurations
for both must be identical to work.

f) FlexRAN: FlexRAN is a flexible and programmable
platform that separates the RAN control and data planes and
supports the design of real-time RAN control applications. It
uses two different ports, one to connect to the eNB agent
and one for API requests which we use to interact with
this module. There is a NETWORK CONTROLLER section
in eNB (or RCC) configuration file in which we can spec-
ify if we want to deploy the FlexRAN agent by setting
FLEXRAN ENABLED=yes/no.

2) Networking: As previously mentioned, we assigned a
static IP to each module. One of the challenges was the direct
communication between the RRU and the RCC. We have
tested two methods to cope with this challenge; First, we
attempted to use hostNetwork instead of CNI. By doing this,
the pod would inherit all of the host interfaces and assigned
IPs of the node, allowing us to separate the RRU-RCC link
from other links. However, this method did not work properly.
Calico CNI deploys a Calico node pod as an agent on each
cluster to manage networking cluster-wide. In this scenario,
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some of the Calico node pods become unready after a while
due to a BGP routing error.

We attempted a second approach which involved manually
deploying Calico instead of relying on RKE to automatically
deploy it. It should be noted that in this case, the Calico subnet
was modified. While this method improved the situation to
some extent, it should be emphasized that the structure of the
OAI modules is not intended to accommodate such scenarios.

3) Software Requirements: The important point is that
RAN module significantly depends on the kernel and OS
settings. Therefore, we must consider items, such as low-
latency kernel and power management settings in the BIOS
and Grub in edge nodes. One of our challenges in this part
was finding the most compatible version of the low-latency
kernel while deploying RRU-RCC.

4) Offline UHD Image: The eNB module uses an im-
age downloader script to program the FPGA image of the
USRP. This program downloads the required UHD images
based on the USRP type, which is set as an environment
variable. We made some changes to the mechanism of this part
to be done offline without needing a direct Internet connection.
We manually downloaded the required images according to
our board type and included them as a volume in the pod
definition file. We also disabled the environment variable that
triggered the execution of the image downloader script based
on its value.

5) Version of eNB Images: As previously stated, we tested
and utilized different images for the eNB module, each of
which performs more effectively in a specific scenario. We
selected the appropriate image based on the given scenario.

6) Testing Tools Preparation: We employed several tools
to test the performance of the deployed network, including:

• Ping
• SCP: To compare download speeds, we used SCP to

transfer a 1GB file.
• Streaming: We deployed an NGINX server close to

the SPGW modules to serve an MP4 file and compare
streaming quality in different scenarios.

• Wget: We also used wget to compare download speeds
with the aforementioned NGINX server.

These tools have been specifically employed in the evalua-
tion section to investigate the importance of VNF placement
and RAN slicing and their effects on the network performance.

E. Mininet Bridges

In this framework, we address the effect of the distance
between different components in a real network by utilizing
SDN tools and the Mininet emulator and creating virtual
networks between our devices. We name these virtual networks
Mininet Bridge (MB). In this part, we present how an MB is
created and what it consists of.

1) Mininet: To create an MB we require a tool capable of
emulating real computer networks. Mininet is a lightweight
network emulator which can set up virtual networks con-
taining virtual hosts, switches, controllers, and links on an
OS. Mininet takes advantage of Linux namespaces instead
of virtualization resulting in a lighter emulation compared

to VMs. Mininet’s straightforward Python API enables the
creation of complex and real-world topologies. Moreover,
Mininet has a CLI in which users can manage, configure, and
interact with the created virtual network. Mininet can utilize
an SDN controller to emulate SDN networks. In a virtual SDN
network created by Mininet, the switches are virtual OpenFlow
switches capable of communicating with the controller using
the OpenFlow protocol.

2) SDN controllers: There exist many SDN controllers with
different capabilities (e.g., POX, Floodlight, and RYU) to serve
as the controller connected to the virtual SDN network. In this
framework, we used ONOS [19] and RYU [20] as the SDN
controller of the MBs. ONOS and RYU are both popular open-
source SDN controllers that support the OpenFlow protocol
and have a large community backed by the Linux Foundation.
RYU is Python-based, making it easier to set up and use, which
results in more popularity among developers. ONOS is coded
in Java and is more complex compared to RYU, but it has
more features and can handle large-scale networks. Moreover,
ONOS is a part of the Open Networking Foundation which
is supported by many major vendors and leading companies
in the telecommunication industry. It is worth mentioning
that ONOS is more suitable for our framework as is more
compatible with large-scale telecommunication.

3) Bridge: To create an MB we need a Linux OS with
Mininet and ONOS/RYU installed on it. we create our topol-
ogy with Mininet’s Python API without hosts, and using OVS
commands we connect the NICs of the device to the virtual
switches. The use of MBs makes our framework more realistic
and more similar to real communication networks. Moreover,
MBs are considered transparent and are useful components in
time of network management, measurement, and manipulation.

IV. EVALUATION

In this section, we use CN2F to investigate the importance
of VNF placement and RAN slicing as two cellular network
capabilities. The details on how to deploy test cases along with
the required scripts to reproduce the results are available on
the CN2F GitHub repository.

A. VNF Placement

Fig. 13 shows the CN2F setup to demonstrate the impact
of VNF placement. Specifically, the test case incorporates
two scenarios which are schematically represented in Fig. 14.
In scenario 1 (Fig. 14a), the multi-media server (an NGINX
stream module) is placed on worker node 3 which also hosts
the core network’s components. On the other hand, the client
is inside the UE. Therefore, the data path between the client
and server passes through the RRU (in worker node 1), the
backhaul bridge (or TN), and the SPGW (in worker node 3).
This scenario can be considered as a Cloud Computing (CC)
scenario, because, in reality, worker node 3 may be placed in
a data center accessed through an IP network (emulated by the
backhaul bridge in this scenario). On the other hand, scenario
2 (Fig. 14b) depicts the case where the (NGINX) server and
the SPGW are moved to worker node 1 beside the eNB. As a
result, this scenario resembles Edge Computing (EC).
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Fig. 13: CN2F setup for the VNF placement evaluation

TABLE I: VNF placement results

Transport Network Parameters Scenario 1 (CC) Scenario 2 (EC)
Bandwidth (Mb/s) Delay (ms) Bit Rate (Mb/s) RTT (ms) Bit Rate (Mb/s) RTT (ms)

10 0 1.9 200 1.9 200
5 50 0.52 340 1.9 340

(a) Cloud computing

(b) Edge computing

Fig. 14: Test cases for the VNF placement

Table I shows the performance of the network in terms
of the achievable bit rate (using the wget utility in the UE
to download an MP4 video from the NGNIX server) and
the Round Trip Time (RTT) to an external server (i.e., the
Google’s DNS server at “8.8.8.8”) for different settings of
the bridge. It is observed that the parameters of the transport
network highly affect the performance of the system in the
CC scenario. For instance, the bit rate is almost halved when
the bandwidth is reduced from 10 Mb/s to 5 Mb/s. However,
in the EC scenario, the bit rate is independent of variations in
the transport network.

TABLE II: RAN slicing results

Scenario Bit Rate (Mb/s)No. Resource Blocks Device
5 UE 1 1.051st 20 UE 2 2.85
10 UE 1 1.402nd 15 UE 2 1.95
15 UE 1 3.003rd 10 UE 2 0.50

B. RAN Slicing

The idea of RAN slicing is to assign different numbers
of resource blocks (RBs) to different network slices in order
to comply with their corresponding service level agreements
(SLAs) relevant to the access network. Using FlexRan along
with eNB, we can test the effect of RAN slicing on the
performance of the system (Fig. 15). In particular, Table II
shows the result when we have two slices and one UE in each
slice6. The total number of RBs is 25 which is divided between
slice 1 (UE 1) and slice 2 (UE 2). As expected by allocating
more RBs to each slice, the bit rate of its UE is increased.
Specifically, the bit rate of UE 1 is 1.05 Mb/s when slice 1
has 5 RBs and it climbs up to 3 Mb/s as the number of RBs
increases to 15.

V. RELATED WORK

Testbed-based evaluation in wireless networks is a prevalent
approach used to assess realistic scenarios. The importance of
testbeds grows when we come to 5G/B5G mobile networks

6In our setup, we use the USRP-B210 without any external/GPS clock
and duplexer. Therefore, some COTS UEs face problems in detecting and
connecting to our network. Among different UEs that we have tested, the
Huawei-E5573-8739 and Huawei-Nova 3e can successfully connect to our
network (both using Qualcomm Snapdragon 680 chipset)
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TABLE III: Cellular network testbeds and frameworks

Testbed SDN NFV E2E Slicing MANO Open-Source ML-Enabled Setup Details
[21], [22], [23], [24] 3 3 7 7 7 7 7

[7] 3 3 7 7 3 3 7
[25] 3 3 7 3 7 7 7
[26] 3 3 7 3 3 7 7
[27] 7 3 3 7 3 7 7
[28] 7 3 3 3 7 7 7

CN2F 3 3 7 7 3 7 3

Fig. 15: Test case for the RAN slicing

due to the complexity and different requirements of these net-
works. This section briefly mentions some developed testbeds
for 5G networks and their capabilities.

In [21], the authors focused on the orchestration of the
TN and RAN by suggesting a hierarchical cross-domain or-
chestrator that offers network programmability and flexibility.
This orchestrator monitors the radio resources at the network
access edge level, the transport resources at the access and
aggregation levels across multiple domains, and the cloud
resources at the network core level to make decisions. The
authors demonstrated the advantages and feasibility of their
proposed orchestration by implementing two use cases of
SDN-based transport and RAN orchestration in a testbed. The
first use case presents sharing of joint RAN-transport resources
between two service providers (SPs), and the second one
demonstrates how an SP can customize its own slice.

The authors in [22] presented the architecture and results
of the ADRENALINE as a testbed, which is an SDN/NFV
packet/optical transport network and edge/core cloud platform
for end-to-end 5G and IoT services, deployed with open-
source software and Commercial Off The Shelf (COTS) hard-
ware. Similarly, the work in [23] provided an experimental
setup of a convergent 5G service scenario involving IoT, cloud,
and edge networks, all featured by SDN capabilities. The
implemented testbed also includes an SDN-based orchestrator
able to dynamically adapt data delivery paths based on the
current load of network switches and links. Another testbed
presented in [24] employs COTS components to embody an
end-to-end 5G platform based on the CRAN architecture,
with a fully virtualized RAN, an optical/wireless fronthaul,
and a cloud-based backend. These approaches do not offer
a complete end-to-end network slicing and the source codes
needed to deploy the testbeds are not publicly available.

Another group of testbeds concentrates on Management
and Orchestration (MANO) implementation. For example,
BlueArch [25] is a 5G testbed providing a hybrid platform for
conducting various experiments with different modes of tests

including simulation, emulation, and interaction with the phys-
ical network and remote testbed platforms. BlueArch supports
ETSI MANO orchestration. The Open MANO and RIFT.io
orchestrators are hosted as VMs within a XEN environment.
Simula testbed [26] also implements a mobile network based
on OAI-EPC deployed as a VNF using Open-Source MANO
(OSM), which is integrated with CRAN architecture with
functional split capability for BBU processing functions. As
another example, in [28] the authors proposed an emulation
framework for zero-touch 5G core network slicing manage-
ment and orchestration that features closed loop automation.
Their framework relies on use of OSM for NFV MANO
functions with NFV orchestration and VNF management func-
tionalities communicating with different Virtual Infrastructure
Management (VIM)s.

On the other hand, the testbed in [27] implements end-
to-end network slicing. However, it does not offer MANO
capability, multi-RATs, and multi-tenancy facilities in the
architecture. This testbed utilizes OAI for both RAN and CN
domains. There are two CNs that share the radio resources
of a single eNB in the RAN. The testbed has been appraised
for connection establishment for both normal LTE UE and the
one with an implemented Network Slice Selection Assistance
Information (NSSAI).

Some other testbeds are presented by researchers with
the objective of AI workloads orchestration to facilitate the
deployment of AI agents into the testbed. In [7], Connected
AI (CAI) is presented as a 5G mobile network testbed with
a virtualized and orchestrated structure using containers. CAI
focuses on integrating Artificial Intelligence (AI) applications
using the Kubeflow tool, albeit it implements partial network
slicing and does not incorporate MANO components. It also
presents an emulated TN enabling the deployment of any
network topology on fronthaul and backhaul, without needing
access to actual transport network topologies.

In Table III, a comparison between our framework and
the ones presented before is demonstrated. In this paper, we
implemented CN2F as an easy-to-setup, cloud-native cellular
network framework, alongside a detailed description of how to
build it. In addition, we provided a GitHub repository along
with an Ansible playbook, which helps researchers and the
industrial community to set up CN2F on their systems to
test and evaluate realistic network scenarios. We implemented
VNF placement to showcase two different scenarios EC and
CC. RAN slicing has been also implemented as another use
case for new-generation cellular networks to demonstrate how
efficient allocation of resources can improve the QoS for
applications based on their demands. This framework takes
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advantage of SDN and NFV capabilities, and its main structure
is independent of specific VNFs.

VI. CONCLUSION

Cellular networks have evolved into fully virtualized and
programmable networks. As a result, an innovative solution
can find its path into operation as easily as some software
updates in the network’s components. The same virtualization
nature of the modern cellular networks also enables building
laboratory testbeds for the research and development teams to
discover new services/products in isolated, yet close-to-field,
environments. In this paper, we shared our findings and best
practices in building such testbeds, called CN2F, for mod-
ern cellular networks using state-of-the-art technologies such
as Docker, Kubernetes, ONOS, and Mininet. We especially
focused on how to set up a cluster of nodes, which host
the cellular network’s VNFs and the management entities,
and bridges, which emulate the intermediate IP networks
between different parts of a real cellular network. Thereby,
CN2F is capable of deploying and testing various scenarios
such as RAN splitting/slicing, edge computing, and VNF
placement. Moreover, for a particular open-source project, we
walked through the process of installing the required packages,
building Docker images and containers, creating pods, setting
the configuration files, and deploying the cellular network’s
core and RAN VNFs on the CN2F. Finally, the performance
of the deployed network was further measured under various
test case scenarios to evaluate the benefits of edge computing
and RAN slicing.
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